CHROM. 17 573

GAS-LIQUID CHROMATOGRAPHIC ANALYSES

XXXVIII*. CAPILLARY COLUMN STUDIES OF UNSATURATED ESTERS OF BENZOIC AND MONOCHLOROBENZOIC ACIDS

ILPO O. O. KORHONEN* and MAIJA A. LIND

Department of Chemistry, University of Jyväskylä, Kyllikinkatu 1-3, SF-40100 Jyväskylä 10 (Finland) (Received January 18th, 1985)

SUMMARY

Eight lower (C_3 - C_6) unsaturated esters of benzoic acid and *ortho-, meta-* and *para*-chlorobenzoic acids were separated on low-polarity (SE-30) and polar (OV-351) capillary columns under various operating conditions. The retention data and the Kováts retention indices for all 32 individual components are given and the retention index increments were used to examine the effect of unsaturation and chlorine substitution. The results are compared with those reported previously for the corresponding normal- and branched-chain esters.

INTRODUCTION

Previously, the gas chromatographic (GC) retention behaviour of some lower unsaturated esters of aliphatic carboxylic acids have been reported^{1,2}, while more recently the GC of lower (C_3 - C_6) unsaturated esters of acetic and haloacetic acids³, propanoic and monochloropropanoic acids^{4,5} and butanoic and monochlorobutanoic acids^{4,6} and methyl esters of chlorinated propenoic⁷⁻⁹ and 2-butenoic acids⁹ has been studied on capillary columns coated with low-polarity (SE-30, OV-101) and polar (OV-351) stationary phases.

Studies on the GC retention behaviour of aromatic esters are few¹⁰⁻¹², earlier parts of this series showing the behaviour of the C_1-C_{12} normal-chain¹¹ and C_3-C_5 branched-chain¹² alkyl esters of benzoic acid and monochlorobenzoic acids. Piás and Gascó have reported¹³ the retention indices of a wide number of alcohols and their benzoyl derivatives on several low-polarity (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25) packed columns, the retention behaviour of some unsaturated components also being shown.

This paper describes the isothermal and temperature-programmed capillary GC of eight lower (C_3 - C_6) unsaturated esters of benzoic and monochlorobenzoic acids. (*E*)-2-Butenyl esters have not been previously studied in this laboratory, unlike seven other series of esters³⁻⁶. Low-polarity SE-30 and polar OV-351 quartz capillary

^{*} For Part XXXVII, see ref. 12.

TABLE I

RETENTION DATA FOR UNSATURATED ESTERS OF BENZOIC, o-CHLOROBENZOIC, m-CHLOROBENZOIC AND p-CHLOROBENZOIC ACIDS, OBTAINED ON SE-30 AND OV-351 CAPILLARY COLUMNS

Conditions as in Figs. 1 and 2.

Peak No.	Compound	Column							
		SE-30			OV-351	51			
		ART*	RRT**	RRT***	ART*	RRT**	RRT***	RRT	
1	2-Propenyl benzoate	9.34	0.74	1.00	12.98	1.99	1.00	1.39	
2	2-Propynyl benzoate	9.52	0.75	1.00	16.39	2.52	1.00	1.72	
3	3-Butenyl benzoate	11.34	0.89	1.00	14.56	2.24	1.00	1.28	
4	1-Methyl-3-butenyl benzoate	11.98	0.94	1.00	14.19	2.18	1.00	1.18	
5	(E)-2-Butenyl benzoate	12.06	0.95	1.00	15.56	2.39	1.00	1.29	
6	4-Pentenyl benzoate	13.65	1.07	1.00	16.59	2.55	1.00	1.22	
7	(E)-3-Hexenyl benzoate	15.71	1.24	1.00	17.92	2.75	1.00	1.14	
8	(Z)-3-Hexenyl benzoate	15.90	1.25	1.00	18.30	2.81	1.00	1.15	
o/1	2-Propenyl o-chlorobenzoate	12.76	1.00	1.37	18.12	2.78	1.40	1.42	
0/2	2-Propynyl o-chlorobenzoate	12.99	1.02	1.36	21.48	3.30	1.31	1.65	
o/3	3-Butenyl o-chlorobenzoate	14.78	1.16	1.30	19.64	3.02	1.35	1.33	
o/4	1-Methyl-3-butenyl o-chlorobenzoate	15.40	1.21	1.29	19.21	2.95	1.35	1.25	
o/5	(E)-2-Butenyl o-chlorobenzoate	15.40	1.21	1.28	20.41	3.14	1.31	1.33	
0/6	4-Pentenyl o-chlorobenzoate	17.00	1.34	1.25	21.46	3.30	1.29	1.26	
o/7	(E)-3-Hexenyl o-chlorobenzoate	19.10	1.50	1.22	22.91	3.52	1.28	1.20	
0/8	(Z)-3-Hexenyl o-chlorobenzoate	19.20	1.51	1.21	23.17	3.56	1.27	1.21	

m /1	2-Propenyl m-chlorobenzoate	12. 69	1.00	1.36	16.53	2.54	1.27	1.30
<i>m</i> /2	2-Propynyl m-chlorobenzoate	12.87	1.01	1.35	19.94	3.06	1.22	1.55
<i>m</i> /3	3-Butenyl m-chlorobenzoate	14.70	1. 16	1.30	18.08	2.78	1.24	1.23
<i>m</i> /4	1-Methyl-3-butenyl m-chlorobenzoate	15.29	1.20	1.28	17.55	2.70	1.24	1.15
m /5	(E)-2-Butenyl m-chlorobenzoate	15.37	1.21	1.27	18.99	2.92	1.22	1.24
<i>m</i> /6	4-Pentenyl m-chlorobenzoate	16. 94	1.33	1.24	20.01	3.07	1.21	1.18
m/7	(E)-3-Hexenyl m-chlorobenzoate	18.86	1.49	1.20	21.19	3.25	1.18	1.12
<i>m</i> /8	(Z)-3-Hexenyl m-chlorobenzoate	19.11	1.50	1.20	21.60	3.32	1.18	1.13
<i>p</i> /1	2-Propenyl p-chlorobenzoate	12.65	1.00	1.35	16.42	2.52	1.27	1.30
p/2	2-Propynyl p-chlorobenzoate	12.80	1.01	1.34	19.82	3.04	1.21	1.55
<i>p</i> /3	3-Butenyl p-chlorobenzoate	14.72	1.16	1.30	18.00	2.76	1.24	1.22
p/4	1-Methyl-3-butenyl p-chlorobenzoate	15.41	1.21	1.29	17.51	2.69	1.23	1.14
p/5	(E)-2-Butenyl p-chlorobenzoate	15.44	1.22	1.28	18.89	2.90	1.21	1.22
<i>p</i> /6	4-Pentenyl p-chlorobenzoate	17.03	1.34	1.25	20.04	3.08	1.21	1.18
p/7	(E)-3-Hexenyl p-chlorobenzoate	18.95	1.49	1.21	21.20	3.26	1.18	1.12
<i>p</i> /8	(Z)-3-Hexenyl p-chlorobenzoate	19.19	1.51	1.21	21.61	3.32	1.18	1.13
C ₁₄	n-Tetradecane	12.70	1.00	-	6.51	1.00	-	0.51

* Absolute retention times (min) were measured from sample injection (Figs. 1 and 2).
** Relative retention time for n-tetradecane (C₁₄) taken as 1.00.
*** Relative retention time for the corresponding unsaturated ester of benzoic acid (1-8) taken as 1.00.
§ Relative retention time for the corresponding compound on SE-30 taken as 1.00.

columns were used. The retention data and the Kováts retention indices for all 32 compounds were determined, together with the retention index increments for the methylene unit, unsaturation and the position of chlorine substitution. The results are compared with those reported previously for aliphatic esters³⁻⁶ and the corresponding normal-¹¹ and branched-chain¹² aromatic esters.

EXPERIMENTAL

Materials

The unsaturated esters of benzoic (1-8), ortho-chlorobenzoic (o/1-o/8), metachlorobenzoic (m/1-m/8) and para-chlorobenzoic (p/1-p/8) acids were prepared from commercial unsaturated alcohols (Fluka, Buchs, Switzerland or Merck-Schuchardt, Darmstadt, F.R.G.) and benzoyl (Merck-Schuchardt) and monochlorobenzoyl chlorides¹¹ as described earlier¹⁴. The esters investigated are listed in Table I.

Commercial mixtures of the appropriate *n*-alkanes, used as reference components, were obtained from different sources.

Methods

GC analyses were performed on a Perkin-Elmer Sigma 3 gas chromatograph under the following operating conditions: injection and flame-ionization detection (FID) temperatures, 275°C; nitrogen carrier gas velocities for methane at 160°C, 14.0 (SE-30) and 14.9 cm sec⁻¹ (OV-351); splitting ratio, 1:25; and chart speed, 10 mm min⁻¹. The columns used were a vitreous silica SE-30 wall-coated open-tubular (WCOT) column (25 m × 0.33 mm I.D.), supplied by SGE (North Melbourne, Australia) and a fused-silica OV-351 WCOT column (25 m × 0.32 mm I.D.), supplied by Orion Analytica (Espoo, Finland). The column temperature was programmed from 100 to 280°C (SE-30) and from 100 to 230°C (OV-351) at 2, 6 and 10°C min⁻¹, and held on OV-351 at 230°C until elution of peaks had ceased. The isothermal data were obtained at 140, 160 and 180°C.

The retention times were measured from the time of sample injection; a Hewlett-Packard Model 3390A reporting integrator was used. The Kováts retention indices were calculated off-line by using two appropriate *n*-alkanes¹⁵; the dead volumes were determined by the injection of methane.

Each of the four mixtures of the esters were analysed separately, together with appropriate n-alkanes, and if overlapping occurred the components were injected separately in turn.

RESULTS AND DISCUSSION

Table I shows the absolute and relative retention times for the unsaturated aromatic esters studied, determined on SE-30 (Fig. 1) and OV-351 (Fig. 2) with temperature programming.

The retention order between the esters on SE-30 is the same as previously reported for the corresponding aliphatic esters³⁻⁶. The (E)-2-butenyl esters, not having been analysed previously, are eluted later than the 1-methyl-3-butenyl esters. The retention order between the isomeric 3-hexenyl esters, *i.e.*, the E- (trans-) isomer is eluted earlier than the Z- (cis-) isomer, is reversed as reported previously for these

Fig. 1. Chromatogram of a mixture of the unsaturated esters of benzoic (1-8), *o*-chlorobenzoic (o/1-o/8), *m*-chlorobenzoic (m/1-m/8) and *p*-chlorobenzoic (p/1-p/8) acids, separated on an SE-30 quartz capillary column with temperature programming from 100°C at 6°C min⁻¹ until elution of peaks had ceased. S = Solvent; C₁₄ = *n*-tetradecane; peaks are listed in Table I.

Fig. 2. Chromatogram of the same mixture as in Fig. 1, obtained on an OV-351 quartz capillary column with temperature programming from 100 to 230°C at 6°C min⁻¹ and maintained at the final temperature until elution of peaks had ceased. $S = Solvent; C_{14} = n$ -tetradecane; peaks are listed in Table I.

benzoic acid esters on a packed SE-30 column¹⁶. The esters in this work were prepared by using a mixture of 3-hexen-1-ols (E:Z isomer = 60:40) and the observed peak areas of the esters show that the aromatic esters are eluted in the same order as the alcohols, as also are the aliphatic esters³⁻⁶.

On OV-351 the 2-propynyl and 4-pentenyl esters are eluted closer together, and generally in the reverse order to the corresponding aliphatic esters³⁻⁶, the ace-

TABLE II

RETENTION INDICES FOR UNSATURATED ESTERS OF BENZOIC, o-CHLOROBENZOIC, m-CHLOROBENZOIC AND p-CHLOROBENZOIC ACIDS, DETERMINED ON SE-30 AT VARIOUS COLUMN TEMPERATURES

Compound*	Column (SE-30) temperature								
	Programmed	from 100°C at	!	Isothermal at					
	2°C min ⁻¹	6°C min ⁻¹	10°C min ⁻¹	140°C	160°C	180°C			
1	1231	1236	1239	1241	1248	1260			
2	1241	1245	1247	1249	1254	1263			
3	1327	1335	1337	1334	1341	1348			
4	1357	1365	1366	1363	1368	1374			
5	1362	1369	1371	1366	1373	1376			
6	1436	1445	1447	1439	1447	1452			
7	1535	1545	1546	1536	1544	1549			
8	1544	1554	1558	1544	1553	1558			
o/1	1396	1403	1407	1399	1410	1420			
0/2	1409	1414	1422	1410	1420	1429			
0/3	1491	1498	1505	1494	1505	1513			
o/4	1522	1529	1533	1522	1535	1540			
0/5	1522	1529	1533	1522	1536	1540			
0/6	1 598	1609	1613	1595	1607	1614			
0/7	1703	1714	1721	1696	1707	1715			
o/8	1707	1719	1727	1700	1712	1720			
<i>m</i> /1	1390	1400	1402	1396	1404	1414			
<i>m</i> /2	1 401	1408	1411	1404	1411	1420			
m/3	1485	1494	1499	1488	1498	1505			
<i>m</i> /4	1514	1524	1528	1517	1526	1533			
m/5	1519	1528	1533	1521	1530	1536			
<i>m</i> /6	1595	1606	1612	1593	1604	1612			
m/7	1691	1702	1712	1686	1696	1704			
<i>m</i> /8	1701	1715	17 24	1695	1706	1715			
<i>p</i> /1	1391	1 39 8	1401	1 395	1404	1414			
p/2	1400	1405	1408	1 402	1410	1418			
p/3	1488	1495	1501	1490	1500	1508			
<i>p</i> /4	1518	1530	1534	1519	1529	1539			
p/5	1522	1531	1534	1522	1532	1539			
<i>p</i> /6	1600	1610	1614	1596	1606	1616			
p/7	1 69 7	1706	1713	1689	1699	1709			
<i>p</i> /8	1707	1719	1726	1699	1709	1720			

* Compounds are listed in Table I.

tylenic esters being eluted first. The (E)-2-butenyl esters are eluted between the 3butenyl and 2-propynyl esters (Fig. 2).

Tables II and III show the retention indices of the components, obtained at six column temperatures on SE-30 and OV-351, respectively. The retention indices of the esters on both columns at 160°C are illustrated in Fig. 3. The retention enhancements on a polar column, *i.e.*, $I_{OV-351} - I_{SE-30}$, are presented in Fig. 4 and

TABLE III

RETENTION INDICES FOR UNSATURATED ESTERS OF BENZOIC, o-CHLOROBENZOIC, m-CHLOROBENZOIC AND p-CHLOROBENZOIC ACIDS DETERMINED ON OV-351 AT VAR-IOUS COLUMN TEMPERATURES

Compound*	Column (OV-351) temperature									
	Programmed	from 100°C at		Isothermal at						
	2°C min ⁻¹	6°C min ⁻¹	10°C min ⁻¹	140°C	160°C	180°C				
1	1806	1805	1828	1820	1836	1848				
2	2003	2004	2026	2004	2017	2026				
3	1895	1897	1921	1902	1917	1933				
4	1874	1876	1 896	1883	1896	1911				
5	1951	1956	1981	1956	1973	1986				
6	2008	2016	2042	2009	2028	2042				
7	2088	2095	2120	2083	2100	2115				
8	2108	2117	2144	2101	2116	2136				
<i>o</i> /1	2094	2106	2127	2086	2104	2125				
o/2	2302	2310	2331	2283	2298	2313				
o/3	2183	2196	2217	2167	2186	2209				
0/4	2159	2171	2191	2145	2163	2183				
o/5	2232	2244	2266	2212	2231	2254				
0/6	2295	2309	2329	2269	2290	2313				
0/7	2384	2397	2414	2351	2371	2392				
o/8	2396	2411	2430	2360	2382	2404				
<i>m</i> /1	2004	2012	2034	2001	2020	2039				
<i>m</i> /2	2208	2214	2231	21 94	2207	2222				
<i>m</i> /3	2088	2104	2119	2082	2101	2122				
<i>m</i> /4	2065	2073	2091	2057	2074	2093				
m /5	2147	2158	2174	2133	2152	2172				
m/6	2208	2219	2239	2187	2208	2229				
m /7	2282	2293	2312	2255	2276	2296				
<i>m</i> /8	2306	2318	2335	2276	2298	2319				
<i>p</i> /1	2000	2006	2035	1999	2019	2035				
p/2	2203	2207	2231	2190	2204	2217				
<i>p</i> /3	2090	2099	2126	2083	2102	2120				
<i>p</i> /4	2065	2070	2096	2059	2077	2093				
p /5	2143	2152	2178	2131	2150	2168				
<i>p</i> /6	2208	2221	2248	2190	2211	2229				
p/7	2282	2293	2319	2258	2279	2297				
<i>p</i> /8	2305	2318	2342	2277	2299	2320				

* Compounds are listed in Table I.

Fig. 3. Retention indices (1) of the eight unsaturated esters of benzoic acid and its monochlorinated derivatives, obtained on SE-30 and OV-351 at 160° C. For identification of the esters (1-8), see Table I.

Fig. 4. Retention enhancements of the four series of aromatic esters on a polar column at 160°C. $\Delta I = I_{OV-351} - I_{SE-30}$ (Table IV). Esters (1-8) are listed in Table I.

Table IV compares the retention enhancements of the unsaturated esters and their saturated homologues.

On both columns the retention increases with increasing temperature and the elution order of the isomers remains unchanged on SE-30. On OV-351, however, the retention order of the closely related 2-propynyl and 4-pentenyl esters of m- (m/2, m/6) and p-chlorobenzoic acids (p/2, p/6) is changed, viz., at higher temperature the acetylenic esters are eluted first (Table III). The retention order between the isomeric m- and p-chloro esters seems to vary with temperature and also with the ester series; the variations are more pronounced on a polar column.

TABLE IV

Ester series	Benzoat	e	o-Chlorobenzoate		m-Chlore	obenzoate	p-Chlorobenzoate	
	Δ <i>I</i> ₁ ***	∆ <i>I</i> 2 [§]	ΔI1***	$\Delta I_2^{\$}$	Δ <i>I</i> ₁ ***	$\Delta I_2^{\$}$	ΔI1 ^{***}	$\Delta I_2^{\$}$
Propyl*	513		633		547		551	_
2-Propenyl	588	75	694	61	616	69	615	64
2-Propynyl	763	250	878	245	796	249	794	243
Butyl*	519	_	624	_	540	-	547	_
3-Butenyl	576	57	681	57	603	63	602	55
(E)-2-Butenyl	600	81	695	71	622	82	618	71
Pentyl*	516	_	623	-	539	_	542	_
4-Pentenyl	581	65	683	60	604	65	605	63
Hexvl*	515	_	621		537	_	538	_
(E)-3-Hexenvl	556	41	664	43	580	43	580	42
(Z)-3-Hexenyl	563	48	670	49	592	55	590	52
1-Methylbutyl**	473	_	577	_	495	_	496	_
1-Methyl-3-butenyl	528	55	628	51	548	53	548	52

COMPARISON BETWEEN RETENTION ENHANCEMENTS OF SATURATED AND UNSATU-RATED ESTERS, OCCURRED ON A POLAR COLUMN AT 160°C

* From ref. 11.

** From ref. 12.

*** $\Delta I_1 = I_{\text{OV-351}} - I_{\text{SE-30}}$

[§] $\Delta I_2 = \Delta I_1$ (unsaturated ester) $- \Delta I_1$ (saturated ester).

The retention enhancements on a polar column presented in Fig. 4 are highest with the 2-propynyl series (2), being due to the acetylenic and terminal unsaturation³ and, as expected¹², lowest with a single 1-methyl-3-butenyl (4) branced-chain ester series studied. The disparity between the columns increases with chlorine substitution in the order p-Cl $\leq m$ -Cl < o-Cl (Fig. 4). As is evident in Table IV, the unsaturated esters always show higher disparities than their saturated homologues, *viz.*, the al-kenyl esters 41-82 retention index units (i.u.) and the most polar 2-propynyl esters 243-250 i.u. The chlorine substitution on the alkyl chain seems to have a negligible effect on the values.

TABLE V

RETENTION INCREMENTS FOR	CHLORINE SUBSTITUTION	ON SE-30 AT	VARIOUS COL-
UMN TEMPERATURES			

Compound*	Column (SE-30) temperature							
	Programmed	l from 100°C al	!	Isothermal	at			
	2°C min ⁻¹	6°C min ⁻¹	10°C min ⁻¹	140°C	160°C	180°C		
<i>o</i> /1	165	167	168	158	162	160		
0/2	168	169	175	161	166	166		
0/3	164	163	168	160	164	165		
0/4	165	164	167	159	167	166		
0/5	160	160	162	156	163	164		
0/6	162	164	166	156	160	162		
o/7	168	169	175	160	163	1 66		
0/8	163	165	169	156	159	162		
Average	164	165	1 69	158	163	164		
m /1	159	1 64	163	155	156	154		
m/2	160	163	164	155	157	157		
m/3	158	159	162	154	157	157		
m/4	157	159	162	154	158	159		
m/5	157	159	162	155	157	160		
<i>m</i> /6	159	161	165	154	157	160		
m/7	156	157	166	150	152	155		
m/8	157	161	1 66	151	153	157		
Average	159	160	164	154	156	157		
<i>p</i> /1	1 60	162	162	154	156	154		
p/2	159	160	161	153	156	155		
p/3	161	160	164	156	159	1 60		
p/4	161	165	168	156	161	165		
p/5	160	162	163	156	1 59	163		
p/6	164	165	167	157	159	164		
p/7	162	161	167	153	155	160		
p/8	163	165	168	155	156	162		
Average	161	163	165	155	158	160		

* Compounds are listed in Table I.

The retention increments of chlorine substitution presented in Tables V (SE-30) and VI (OV-351) are in the same ranges as previously reported for the normalchain¹¹ and branched-chain¹² homologues, showing minimal enhancement with unsaturation, however. Also, the retention increment ratios between the columns given in Tables VI and VII seem to increase with increasing unsaturation and especially with acetylenic unsaturation (Table VI). This indicates the increased polar effects, as shown previously with the aliphatic esters^{5,6}.

Series $1 \rightarrow 3 \rightarrow 6$ and $1 \rightarrow 5$ permit consideration of the retention index increase for the methylene unit, shown in Table VIII. The values are in the ranges 93-128 (SE-30) and 81-137 i.u. (OV-351), again showing little enhancement with unsaturation¹¹. The same trend is also found by the replacement of an α -hydrogen

TABLE VI

Compound*	Column (OV-351) temperature									
	Programme	ed from 100°C	C at	Isotherma	- ΔI _{SE-30↔} at					
	2°C min ⁻¹	6°C min ^{−1}	10°C min ⁻¹	140°C	160°C	180°C	- 160°C			
o/1	288	301	299	266	268	277	1.65			
0/2	299	306	305	279	281	287	1.69			
o/3	288	299	296	265	269	276	1.64			
o/4	285	295	295	262	267	272	1.60			
0/5	281	288	285	256	258	268	1.58			
0/6	287	293	287	260	262	271	1. 64			
o/7	296	302	294	268	271	277	1.66			
0/8	288	294	286	259	266	268	1. 67			
Average	289	297	293	264	268	275	1.64			
<i>m</i> /1	198	207	206	181	184	191	1.18			
m/2	205	210	205	1 90	190	1 96	1.21			
m/3	193	207	198	180	184	1 89	1.17			
<i>m</i> /4	191	1 97	195	174	178	182	1.13			
m/5	196	202	193	177	179	18 6	1.14			
m/6	200	203	1 97	1 78	180	187	1.15			
m/7	194	1 98	192	172	1 76	181	1.16			
m/8	198	201	191	175	182	183	1.19			
Average	197	203	1 9 7	178	1 82	187	1.17			
p /1	1 94	201	207	179	183	187	1.17			
p/2	200	203	205	186	187	191	1.20			
p/3	195	202	205	181	185	187	1.16			
p/4	191	194	200	176	181	182	1.12			
p/2	192	196	197	175	177	182	1.11			
<i>p</i> /6	200	205	206	181	183	187	1.15			
<i>p</i> /7	194	198	199	175	179	182	1.15			
p/8	197	201	198	176	183	184	1.17			
Average	195	200	202	179	182	185	1.15			

RETENTION INCREMENTS FOR CHLORINE SUBSTITUTION ON OV-351 AT VARIOUS COL-UMN TEMPERATURES

* Compounds are listed in Table I.

** For the retention increments on SE-30, see Table III.

atom in the ester series 3 by a methyl group $(3 \rightarrow 4)$, with respect to the saturated esters¹². From Table VIII it is also apparent that on SE-30 the retention decreases with increasing unsaturation, while on OV-351 the trend is opposite. The (*E*)-2-butenyl esters on SE-30 are anomalous in this respect, however. These findings are comparable to those of the aliphatic esters studied previously³.

The effects of chlorine substitution with benzoic acid esters^{11,12} and unsaturation with aliphatic esters³⁻⁶ have been examined and discussed previously and it is apparent that the same trends are also evident with the unsaturated aromatic esters studied in this work.

TABLE VII

SEPARATION BETWEEN MONOCHLOROBENZOATES ON SE-30 AND OV-351 CAPILLARY COLUMNS AT VARIOUS TEMPERATURES AND RETENTION INCREMENT RATIOS BETWEEN THE COLUMNS

SE-30					Column									
					OV-351					Δ <i>I</i> _{SE-30}				
Ici	∆I _{m-Cl}	∆I _{p-Ci}	$\Delta I_{p-Cl} - \Delta I_{p-Cl}$	$\Delta I_{p-Cl} - \Delta I_{m-Cl}$	∆I•-ci	∆I _{m-Cl}	∆I _{p-Cl}	$\Delta I_{p-Cl} - \Delta I_{p-Cl}$	$\Delta I_{p-Cl} - \Delta I_{m-Cl}$	o-Cl	m-Cl	p-Cl		
				(H) 1										
64	159	161	3	2	289	1 97	195	94	-2	1.76	1.24	1.21		
65	160	163	2	3	297	203	200	97	-3	1.80	1.27	1.23		
69	164	165	4	1	293	197	202	91	5	1.73	1.20	1.22		
58	154	155	3	1	264	178	179	85	1	1 67	1 16	1.15		
63	156	158	5	2	268	182	182	86	0	1 64	1 17	1 15		
64	157	160	4	3	275	187	185	90	-ž	1.68	1.19	1.16		
6 6 6 6 6 6	4 5 9 8 3 4	$\begin{array}{c c} & \Delta I_{m-Cl} \\ \hline 4 & 159 \\ 5 & 160 \\ 9 & 164 \\ \hline 8 & 154 \\ 3 & 156 \\ 4 & 157 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{p-Cl} ΔI_{p-Cl} ΔI_{p-Cl} ΔI_{p-Cl} ΔI_{p-Cl} ΔI_{p-Cl} ΔI_{p-Cl} 4 159 161 3 2 289 5 160 163 2 3 297 9 164 165 4 1 293 8 154 155 3 1 264 3 156 158 5 2 268 4 157 160 4 3 275	A_{p-Cl} AI_{p-Cl} AI_{p-Cl} AI_{p-Cl} AI_{p-Cl} AI_{p-Cl} AI_{p-Cl} AI_{p-Cl} AI_{m-Cl} 4 159 161 3 2 289 197 5 160 163 2 3 297 203 9 164 165 4 1 293 197 8 154 155 3 1 264 178 3 156 158 5 2 268 182 4 157 160 4 3 275 187	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

TABLE VIII

Compound*	Stationary phase								
	SE-30			OV-351					
	Δ <i>I</i> _{CH2} **	ΔI _{α-CH2} ****	ΔI ^S	ΔI _{CH2} **	ΔI _{a-CH2} ***	ΔI ^{\$}			
1	_		-16			59			
2			-10			240			
3	93		-19	81		38			
4		27	-13		-21	42			
5	125		13	137		94			
6	106		-11	111		54			
7			-14			27			
8			-5			43			
o/1	_		-12	-		49			
o/2			-2			243			
o/3	95	_	-15	82		42			
0/4		30	-7		-23	44			
0/5	126		16	127		87			
0/6	102		-10	104		50			
o/7			-10			33			
o/8			-5			44			
<i>m</i> /1			-14	_		55			
<i>m</i> /2			-7			242			
m/3	94	-	-19	81	_	44			
m/4		28	-12		-27	41			
m/5	126		13	132		95			
<i>m</i> /6	106		-10	107		55			
m/7			-18			25			
<i>m</i> /8			-8			47			
<i>p</i> /1	_		-15	_		49			
p/2			-9			234			
p/3	96	_	-18	83	_	37			
p/4		29	-11		-25	41			
p/5	128		14	131		85			
p/6	106		-10	109		53			
p/7			-17			25			
p/8			-7			45			

RETENTION INCREMENTS FOR METHYLENE UNITS AND EFFECTS OF UNSATURATION ON SE-30 AND OV-351 AT 160°C

* Compounds are listed in Table I.

** Obtained from series $1 \rightarrow 3 \rightarrow 6$ and $1 \rightarrow 5$. *** Effect of replacement of an α -hydrogen atom in series 3 with a methyl group $(3 \rightarrow 4)$.

[§] Deviation due to the unsaturation, *i.e.*, I_{Unsaturated compound} - I_{Saturated compound}^{11,12}.

ACKNOWLEDGEMENTS

I. O. O. Korhonen gratefully acknowledges the Kalle and Dagmar Välimaa Foundation (Cultural Foundation of Finland), the Medica Corporation Research Foundation and the Alfred Kordelin Foundation for grants and the Academy of Finland for financial support.

REFERENCES

- 1 J. R. Ashes and J. K. Haken, J. Chromatogr., 111 (1975) 171, and references cited therein.
- 2 J. R. Ashes and J. K. Haken, J. Chromatogr., 62 (1971) 39.
- 3 I. O. O. Korhonen, J. Chromatogr., 288 (1984) 329.
- 4 I. O. O. Korhonen, J. Chromatogr., 270 (1983) 181.
- 5 J. K. Haken and I. O. O. Korhonen, J. Chromatogr., 324 (1985) 343.
- 6 J. K. Haken, B. G. Madden and I. O. O. Korhonen, J. Chromatogr., 325 (1985) 61.
- 7 I. O. O. Korhonen, J. Chromatogr., 257 (1983) 122.
- 8 J. K. Haken and I. O. O. Korhonen, J. Chromatogr., 268 (1983) 511.
- 9 I. O. O. Korhonen, J. Chromatogr., 285 (1984) 115.
- 10 J. K. Haken, H. N. T. Hartley (nee Dinh) and D. Srisukh, Chromatographia, 17 (1983) 589, and references cited therein.
- 11 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 322 (1985) 83, and references cited therein.
- 12 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 323 (1985) 331.
- 13 J. B. Piás and L. Gascó, Anal. Chim. Acta, 75 (1975) 139.
- 14 J. D. Edwards, W. Gerrard and M. F. Lappert, J. Chem. Soc., (1957) 353.
- 15 G. Guiochon, Anal. Chem., 36 (1964) 661.
- 16 L. Gascó and R. Barrera, Anal. Chim. Acta, 61 (1972) 253.